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1. Architectural Analysis

This work compared computer architectures by measuring the exccution of an identical sct of high level
language programs. Comparative studics arc difficult and expensive as they require an environment in which
all the architectures can be analyzed on a common basis. Simulation has been used, but the slow speed makes
it prohibitively long to collect a significant sample. Performance measures, such as the number of
instructions, reflect not only architectural differences but factors (such as compilers) not related to the

architecture.

The instruction strecams of the 1BM S/370, DEC PDP-11, and P-codc machines werc mcasured using a
microprogrammable processor--Emmy. The measurement mechanism is embedded into the interpreter (an
cmulator) for the machine, and has access to all aspects of the instruction exccution. The DEC VAX
instruction strcam was measurcd on a VAX 11/780 using a trace feature in the architecture, A sct of

FORTRAN programs was uscd for measurements, and reflect a scientific work load.

The analysis first studicd the composition of the instruction stream. Total number of instructions exccuted,
shows the VAX architecture to be most cfficient, but measurcs of the activity necessary by the interpreter
indicate that the S/370 representation is fastest to interpret. Memory reference behavior indicated that the
8-bit displacement used by the VAX is very cffective for local referencing, but VAX suffers in referencing
global objects. Measurcments of branch behavior have shown that the PDP-11 and VAX architectures
require 10-15% more branch instruction than an ideal representation of the program would indicate. This

architectural defect results from the short range of cenditional branch instructions.

This work analyzed the interaction between compiler optimization techniques and the instruction strcams that
result from optimization, Six $/370 compilers generated different representations of the test work load, and
produccd the data base for study of high level fanguage behavior and architectural analysis. Optimization,
while reducing the resource demands of a program, does not apply uniformly to all aspects of instruction
exccution. ‘The fixed-point computation and memory reference demands are greatly reduced, but the control
requircments of a program arc largely unaffected.  Because the absolute occurrence of control related

instructions is constant, their rclative frequency incecases with optimization.
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2. Directly Executed Languages

A natural way to make compilation as straightforward as possible is to make the exccution architecture fit the
high-level language. This work centers on a family of exccution architecturces called directly exccuted
languages, or DELs. High-level language statements are closely represented by DEL iustructions. DEL
representations minimize the number of bits needed in the instruction strcam for operand specification,
without resorting to encodings that require knowledge of the frequency of occurrence of individual operands.
A Pascal-to-DEL compiler and a DEL processor emulator are used to mcasurc the number of instructions
required to run five test programs to completion. The number is also measured for the HP 1000F, the IBM
370, Pascal P-code and the DEC Vax. The average of the ratios of the numbers for these to the number for
Adept is 3.46. The number of main memory bytes read for data is 5.42 times that for Adept, and the ratio for
bytes written is 14.73. ‘These results show that it is possible to make an execution architecture suitable for a
high-level language in a way that results in architectural measurcs that may indicate a higher speed of

exccution and a lower cost of implementation than some familiar architectures.




3. Concurrent Execution

The execution time of instruction can be effectively reduced by overlapping the start of the exccution of one
instruction with the end of the cxccution of another. This process of overlapping instruction cxccution is
called pipelining and it is uscd on all "super computers™. An example of an instruction strcam which has been

pipelined is shown in Figure 3-1.

| ¢ | oc| aG | oF | x|

L ¢ | pcl ac | oF | Bx |

| 1r | pclac] ok | Ex |

Lir | bl ac | or | ex |

Figure 3-1: Pipelined Exccution

Extending the concept of pipclining to its ultimate would generate an exccution sequence where all
instructions exccute at the same time. But since simultancous exccution of all instructions would mean that
inputs are fctched at the same time and results arc produced at the same time, simultancous exccution could
only be performed correctly if no instruction in the task required the completion of any other instriction to
perform its function. Since this is only possible in the most trivial of cascs, the correct cxecution of all other
programs can only occur when instructions wait for other instructions to ciccute producing resulis which are
needed for their correct exccution. An example of such an ultimate pipeline is illustrated in Figure 3-2.
Exccuting multiple instructions at a time will be called concurrent exccution of instructions as opposed to
parallel cxccution which usually refers to a single instruction strcam, muliiple data strcam style of

computation,

There arc different degrees to which concurrent execution of instruction streams can take place. Using a
minimal amount of hardware, a small amouat of concurrency can be detected providing a modest increase in
cxccution speed. The amount of concurrency detected in these schemes can be compared to the serial
speedup of traditional machines which have instruction prefetch but little or no pipelining. Introducing more
hardwarc increases the amount of concurrency which can be detected and subsequently the execution speed
of the task. Concurrency such as this can be compared to a highly pipelined machine which allows out of

order exccution, multiple path exploration, and interlcaved memory traffic.




Liwr nelac | ok | x|

Lie | nel ac | Lor | rx |
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Figure 3-2: The Ultimate Pipeline

Although the degrees of concurrency detection can actually be thought of as a continuum, four distinct levels
have been defined in our rescarch. These levels are defined so that incrcasing level numbers incrcase the
amount of concurrency detected with a corresponding increase in the amount of dificulty of detection and

subscquently the amount of hardware nceded for implementation. They include:

3.1 Level O - Pipelined Execution

The main feature of Level 0 concurrency detection is that there is no concurrency actually detected at all,

Level 0 concurrency is characterized by the fastest program exccution possible with the single restriction that H

an average maximum of onc Instruction is executed in cach machine cycle.

3.2 Level 1 - Transparent Concurrency

Level 1 concurrency is characterized by a direct examination and exploitation of the concurrency which
existed in the original task. In this level of concurrency, only the concurrency which was explicitly apparent

in the task is detected.

3.3 Level 2 - Machine Detectable Concurrency

Fevel 2 concurrency is marked by taking advantage of all the concurrency which a machine can detect without

resorting to algorithm recoding or code manipulation.
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3.4 Level 3 - Algorithm Detectable Concurrency

Level 3 concurrency is characterized by analyzing the job to be done and restructuring it in hardware and
software to produce a representation which will exccute in a minimal amount of time using a minimum
number of steps.  More precisely, Level 3 concurrency is all concurrency which can be detected

algorithmically. This detection process can occur at both the hardware and software level.

We have completed a fairly extensive study of the speedup potential at cach of the above levels. One such
studylfound the concurrency available in a sample DEL program, shown in 3-3. Note: fevel 3a is compile

time detection only while level 3b represents both compile and runtime detection.

Level of Concurrency

0 1 2 3a 3b
¢ Dynamic Number :
. 435 435 435 390 390
of Instructions
Machine Cycles
to Exccute Task 435 306 180 121 93

Spcedup 1.00 1.42 242 322 4.19

Figure 3-3:  Ratios for DiiTerent 1evels of Concurrency
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